

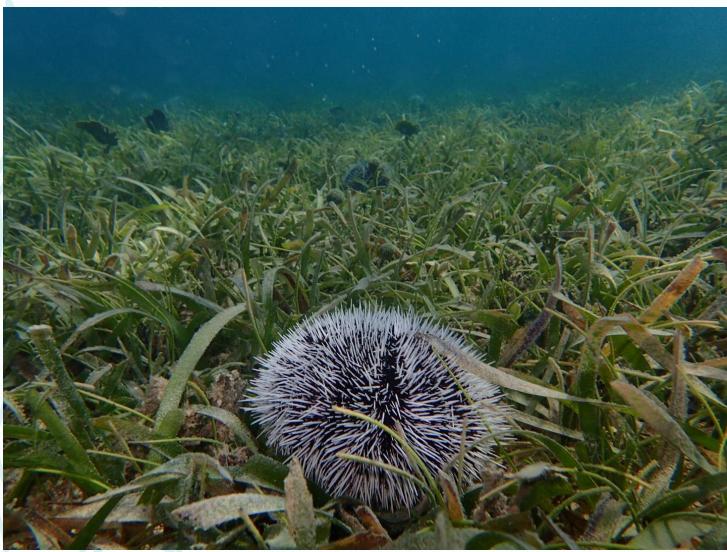
Histological, Parasitic and Bacterial
Assessment of White Sea Urchins
(Tripneustes ventricosus) in Saint Kitts, West Indies

Aakansha Virwani, Michelle Dennis, Mark Freeman

White Sea Urchins (Tripneustes ventricosus)

- Main algae and sea grass grazer
- Have many interactions with other organisms –
 have an important ecological role [4]

White sea urchins. Left-Wild type. Right- Albino.



White sea urchins at Cockleshell Bay

White sea urchins at Cockleshell Bay

Why white sea urchins?

- High importance in marine ecosystem- noted decline in numbers
- West Indian sea egg
- Literature \downarrow [2 & 4]

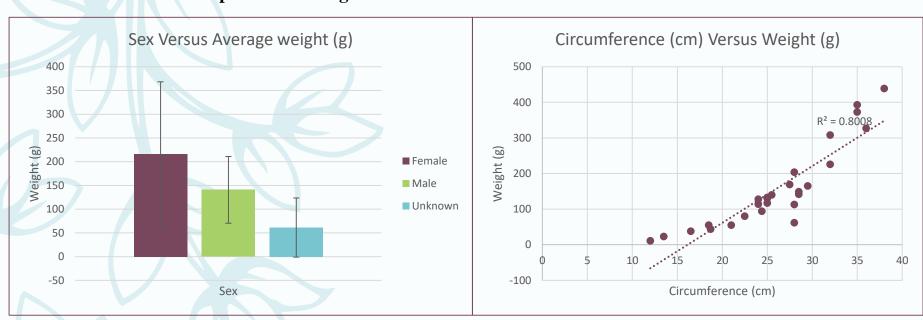

Gonads or "eggs" of the white sea urchins

Dissections & Discoveries Galore! (aka Methodology)

Sea urchins dissected so far= 27

Histology processing

Spineless sea urchins with low gut ingesta.

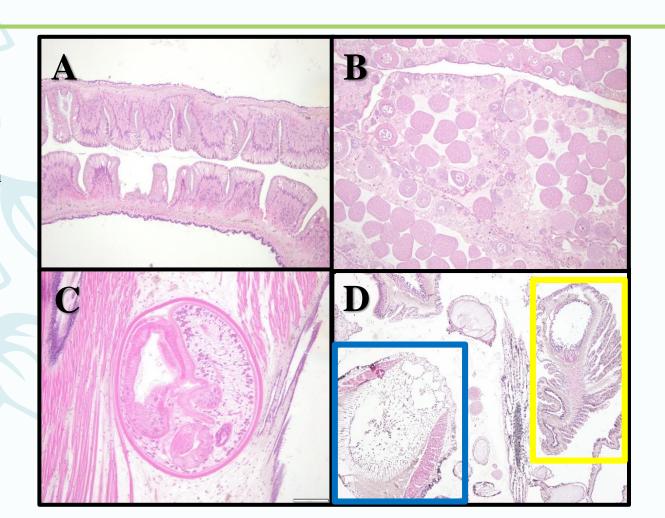


SCHOOL OF VETERINARY MEDICINE

What We Found (Results)

Comparisons of weight with circumference and sex of white sea urchins.

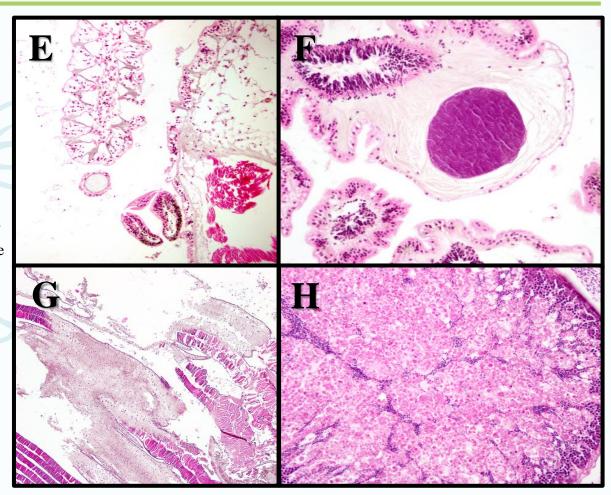
Graph 1: The weight of the sea urchins corresponds to their sex. Females tend to be heavier compared to males. 'Unknown' is for the urchins who did not have any developed gonads.


Graph 2: The circumference of the sea urchins is directly proportional to their weight. The R^2 is close to 1 which means there is good correlation between the two variables.

ROSS UNIVERSITY

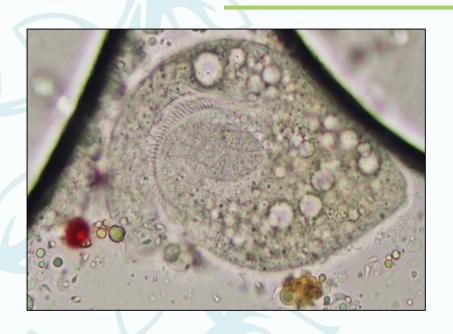
Hematoxylin & Eosin stained histology slides from fixed tissues.

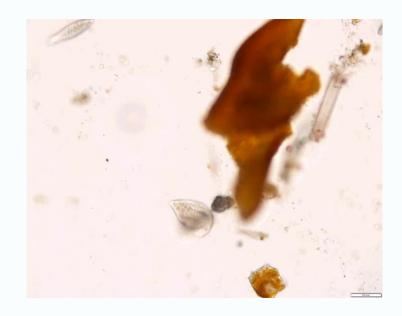
A- Intestine (10x). B- Ovarian tissue (10x). C- Digenean metacercaria in muscle layer of Aristotle's lantern (40x). D- Test (10x). Blue box: Remaining spine matrix and surrounding muscle layer. Yellow box: Tube feet. [5]



Hematoxylin & Eosin stained histology slides from fixed tissues.

E- Inflammation of pedicellaria (20x). F-Bacterial aggregate in gills (40x). G-Degeneration of the interpyramidal muscle of Aristotle's lantern (10x). H- Involution of male gonads (40x). [5]





Type 6 ciliate in white sea urchin esophageal and gonadal wet mounts (40x).

Type 5 ciliate in white sea urchin gonadal and intestinal wet mounts; possibly (*Parametopus circumlabens*) (40x). [2]

Type 1 ciliate in white sea urchin in esophageal, intestinal, gonadal and coelomic fluid wet mounts; possibly (Entorhipidium triangularis or Biggeria bermudense) (40x). [2 & 3]

Type 4 Ciliate in white sea urchin gonadal and intestinal wet mounts; possibly *Amphileptus punctatus* (40x). [2]

Type 3 ciliate in white sea urchin intestinal and coelomic fluid wet mounts (100x).

Type 1 flagellate in white sea urchin gonadal wet mount (40x).

Bacterial isolation from the gonads- Sensititre™ OptiRead™ results:

- Shewanella putrefaciens
- Elizabethkingia meningoseptica
- Vibrio fluvialis and Vibrio alginolyticus
- Pseudomonas fluorescens and Pseudomonas aeruginosa
- In the process of PCR and sequencing

So What Now?

- Ciliates and flagellates [3, 7,8 & 9].
- Spineless sea urchins had low gut ingesta- unable to latch to substrates- possibly due to an opportunistic bacterial infection.
- More pathology in males compared to females possible indication of females being more immunologically active than the males [1].

So What Now?

- Some of the bacterial species isolated were found in other bacterial studies. Other bacterial studies found endospore & toxin producing bacteria and enteric pathogens [6].
- Sea urchin research -prevent and predict mass mortalities -significant for economy and aquatic ecosystems.

Main References

[1]: Arizza, V. (2013). Gender differences in the immune system activities of sea urchin paracentrotus lividus. *Comparative Biochemistry and Physiology, Part A, 164*(3), 447-455.

[2]: Francis-Floyd, R. (n.d.). Diagnostic Methods for Health Assessment of the Long-Spined Sea Urchin, Diadema antillarum. Typescript in preparation, University of Florida.

[3]: Lynn, D. H., & Strüder-Kypke, M. (2005). Scuticociliate Endosymbionts Of Echinoids (Phylum Echinodermata): Phylogenetic Relationships Among Species In The Genera Entodiscus, Plagiopyliella, Thyrophylax, And Entorhipidium (Phylum Ciliophora). *Journal of Parasitology*, *91*(5), 1190-1199.

[4]: Pena, M. H.; Oxenford, H.A.; Parker, C.; Johnson, A. (2010). Biology and fishery management of the white sea urchin, *Tripneustes ventricosus*, in the eastern Caribbean.

[5]: Work, T. M. (n.d.). *Histology Manual for Tripneustes gratilla, US Geological Survey*. Typescript in preparation, National Wildlife Health Center, Honolulu Field Station, Honolulu.

[6]: Bauer, J & Agerter, C. (1994). Isolation of potentially pathogenic bacterial flora from tropical sea urchins in selected west atlantic and east pacific sites. *Bulletin of Marine Science*, 55(1), 142-142.

[7]: Pagliara, P., & Caroppo, C. (2012). Toxicity assessment of Amphidinium carterae, Coolia cfr. monotis and Ostreopsis cfr. ovata (Dinophyta) isolated from the northern Ionian Sea (Mediterranean Sea). *Toxicon,60*(6), 1203-1214.

[8]: Reuter, K. E., & Levitan, D. R. (2010). Influence of Sperm and Phytoplankton on Spawning in the Echinoid Lytechinus variegatus. *The Biological Bulletin*, 219(3), 198-206.

[9]: Starr, M., Himmelman, J. H., & Therriault, J. (1990). Direct Coupling of Marine Invertebrate Spawning with Phytoplankton Blooms. *Science*, 247(4946), 1071-1074. doi:10.1126/science.247.4946.1071

Questions?

