Preliminary sea turtle hatchling gender analysis in the face of Climate Change using TSOX9, DMRT1, β-ACTIN, and FOXL2 mRNA

Reia Guppy¹, Akklia Charles¹, Iibrihim Gittens¹, Kathryn Audroing²

¹Maritime and Coastal Studies, University of Trinidad and Tobago, 2nd Avenue N., Western Main Rd., Chaguaramas, Trinidad

²Turtle Village Trust, 138 Eastern Main Road, Valencia, Trinidad
Background

• Primary sea turtle conservation focus
 • Nesting females
 • Census counts

• Deposited eggs
 • 55 – 75 day incubation
 • Assumed 50/50% male/female

• Paucity of information on
 • Hatchling success
 • Hatchling gender
 • Climate change
The Potential Problem(s) associated with Climate Change

- Nesting Ground Loss
- Sea Level Rise
- Acid Rain (EXTREME WEATHER)
- Storms, Rough Seas
- Nesting Ground Loss, Sea Level Rise
- Hatchling Impacts
- Egg Shell vulnerability
- Nesting events
- Disease
- Sand Temperature

Gender

Migration nesting patterns
The Gender ‘Catch 22’

- Gender either
 - X-Y chromosomes
 - Environmental sex determination
 - Temperature-dependent sex determination (TSD)

- TSD in Sea turtles
 - Pivotal temperature, 50/50%
 - Hawksbill 29.2 °C (Mrosouvsk et al. 1992)
 - Greens 29.2-29.3 (Godfrey and Mrosovsky 2006)
 - Loggerheads 29.3 °C (Mrosovsky et al., 2002)
 - Leatherbacks 29.5°C (Furler,2005)
 - Olive Ridley 30.5-32.5 °C (Wibbels et al 1998)
Our Questions

Given that air temperature is increasing....

1. Is gender 50/50 ratio at risk?
2. What is the potential effect at nest depth and grain size?

Intervention needs for management of nesting for increased hatchling survival?
Sex ID – Phenotypic

1. Length of tail
2. Position of cloaca
3. Gonadal isolation (incl. urogenital ridge)

(Wyneken, n.d.)
Sex ID - Genotypic

1. Blood

2. Probing of urogenital ridge
 - Time
 - Temp

3. Tissue (urogenital ridge)
 - mRNA signals
 - Gonadal hormones ID
 ✓ DMRT1
 ✓ tSOX9
 ✓ Dax1
Dmrt1 is conserved in vertebrates

Kettlewell et al. 2000

(Valenzuela 2008)
Preliminary Gender Study

• 56 tissue samples
 • 6 immature hatchling (IH)
 • 15 hatchling (H)
 • 9 Juvenile (J)
 • 26 confirmed females (NF)

- 5 Green
- 41 Hawksbill
- 10 no ID

• RNA extracted
 • (Qiagen Rneasy Kit)

• PCR
 • 4 target genes amplified with PCR
 • Visualized on 1.6% agarose gel
Genes of interest

(Valezuela 2008)
Preliminary Gender Study

(H/Ju)
GR 100% F
HB 85% F
UNK 71.4% F

<table>
<thead>
<tr>
<th>Species</th>
<th>Type</th>
<th>TSOX9</th>
<th>DMRT1</th>
<th>ACTIN</th>
<th>FOXL2</th>
<th>Gender</th>
</tr>
</thead>
<tbody>
<tr>
<td>HB</td>
<td>H</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>HB</td>
<td>H</td>
<td>+</td>
<td>+</td>
<td>F</td>
<td>IF</td>
<td>IF</td>
</tr>
<tr>
<td>HB</td>
<td>H</td>
<td>+</td>
<td>+</td>
<td>F</td>
<td>IF</td>
<td>IF</td>
</tr>
<tr>
<td>HB</td>
<td>H</td>
<td>+</td>
<td>+</td>
<td>F</td>
<td>IF</td>
<td>IF</td>
</tr>
<tr>
<td>HB</td>
<td>H</td>
<td>+</td>
<td>+</td>
<td>F</td>
<td>IF</td>
<td>IF</td>
</tr>
<tr>
<td>HB</td>
<td>H?</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>UNK</td>
<td>H?</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>UNK</td>
<td>H?</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>UNK</td>
<td>H?</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>UNK</td>
<td>H?</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>UNK</td>
<td>H?</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>UNK</td>
<td>H?</td>
<td>†</td>
<td>+</td>
<td>++</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hatchling GENDER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
</tr>
<tr>
<td>Male</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hatchling GENDER</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incompletely Developed</td>
<td>20.0</td>
</tr>
<tr>
<td>Fully Developed</td>
<td>63.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hatchling GENDER</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incompletely Developed</td>
<td>13.3</td>
</tr>
<tr>
<td>Fully Developed</td>
<td>3.3</td>
</tr>
</tbody>
</table>

Male 27%
NF 46%
IH 11%
J 16%
How does this relate to impacts of climate changes?

• Impact of air temperature on sand temperature?

• Role of beach characteristics?

• Darker sands warmer than lighter sands (Fadini et al. 2011)

Methods

- Hobo temps
- Shade v exposed
- Multiple depths
- Spatial v temporal

(Anon n.d.)
Air Temperatures

Varies greatly by site from national weather – important to **MEASURE TEMPERATURE AT NESTING SITE**
Sand Temperature

(Charles 2017)

- Temp at 80cm varies depending on proximity to foliage and water

Grande Riviere

Shade

• Temp at 80cm varies depending on proximity to foliage and water

Grande Riviere - Site 3

Grande Riviere - Site 4

Grande Riviere - Site 5
- TC has cool sand temp
 - More males?
 - Low hatchling success?

- LT and SP deeper sands warmer
 - LT = females or low hatchling success
 - LT & SP = males in shade? Females in sun?
Sand Grain Size

Course sand warmer than finer sands (Júnior and Castro 2003)

Helps explain why LT and SP warmer than TC

Methods
- ½” diam. corer
- Sieved per depth section (10 – 50cm)
- Weighed (g)
Preliminary Conclusions

• Trinidad and Tobago are already seeing higher % female hatchlings!
 • 83% of hatchlings tested female
 • Maybe linked to coarse sands
 • Possible to lose hatchlings due to excessive temps

• Beaches with very fine sands may produce more males

• Need to test
 • More Hatchlings and more species
 • Expand genes and mRNA analysis
 • Extend temperature experiment during active nesting season... *use nesting boxes?*
Thank You.....
Merci!

Any questions?