Future climate change in the Antilles: Regional climate, tropical cyclones and sea states

Ali Belmadani – Météo-France Antilles-Guiana (DIRAG), Martinique

Acknowledgements: P. Palany, R. Pilon, F. Chauvin, A. Dalphinet, D. Bernard

3rd Caribaea Initiative Research & Conservation Workshop, Guadeloupe, May 30th 2018
Regional Climate in the Antilles
4 regions

Jury et al. 2007 J Geophys Res

4 groups (rainfall)

Annual precip: (1)
Semi-annual: (2)-(4)

Dry season ~Jan-Apr
Wet season ~May-Nov

Precipitation clusters from factor analysis over 35 stations in 1951-1981

How might these and other patterns change with global warming?
• **Background**: observed trends in the Caribbean and future projections.

• **Previous work @Météo-France**: climate change in the Lesser Antilles.

• **The C3AF project**: revisiting climate projections for the French West Indies. Changes in tropical cyclone activity and sea states.

• **Concluding remarks**.
Background
Observed trends in the Caribbean
Temperature changes

Day-time temp.

Night-time temp.

Day-night diff.

Increase in min & max temp.

Day-time temp: +1.0°C in 50 years

Night-time temp: +1.4°C in 50 years

Reduced day-night temp. difference

Trends in max/min temp. & diurnal thermal amplitude (°C) in 1961-2010
Observed trends in the Caribbean
Precipitation changes

Trends in total & extreme precipitation (%) in 1961-2010

- No significant trend in total precip
- No significant trend in extreme precip (except W. Cuba)
- Records too short? Decadal variations?
Projected trends in the Caribbean
Precipitation changes

Cuba/Jamaica/Barbados/Belize collaboration: PRECIS RCM 50 km resolution (UK Met Office)

Change in monthly mean rainfall (%) in 2071-2100 (A2) relative to 1961-1990

Strong drying of wet season (25-50%)
Consistent with IPCC-AR5 projections
Related to increased trade winds in the western Caribbean Sea (CLLJ)
May also lead to reduced tropical cyclone activity?

Change in Caribbean rainfall (%) in 2071-2100 (A2) relative to 1961–1990
Projected trends in the Caribbean
Regional climate change

US/Central America/Jamaica collaboration:
WRF RCM 12 km resolution (USA)

Year-round regional warming
+0.1-0.3°C/decade over the Antilles
Insensitive to resolution: ocean control?

Drying trend over the Antilles
Greater Antilles: max in wet season
Lesser Antilles: max in dry season

But very short 5-yr simulations!

Change in monthly mean temperature (°C) & rainfall (%) in 2056-2060 (RCP8.5) relative to 2006-2010
Projected trends in the Caribbean Tropical cyclone activity

Cyclone activity in 2078-2099 (RCP8.5) & 1982-2003

Atlantic cyclone activity shifts northward
- Shorter hurricane season with less events
- + frequent intense & long-lasting hurricanes

But 50 km resolution (CORDEX, RegCM4)

3rd CI RCW
Le Gosier, Guadeloupe, May 30th 2018
Projected trends in the Caribbean Sea states (waves)?

Atlantic: wave heights reduce 5-10% all-year

Caribbean: increase 5-10% wet season (CLLJ?)

Large model ensemble but not high resolution (0.5°-1.25° waves / 0.2°-0.6° winds)

Atlantic hurricane wave heights:
rise ~40% in two climate model scenarios
fall ~40% in a third scenario
=> Uncertainties in cyclone projections

Model ensemble, not high res (0.5° waves/winds)

Change in JAS wave heights (%) for 2070-2100 (A2/A1B/B2) relative to 1979-2009

Hemer et al. 2013 Nature Climate Change

Fan et al. 2013 J. Climate

Change in JAS extreme wave heights (%) for 2081-2100 (A1B) relative to 2001-2020

3rd CI RCW
Le Gosier, Guadeloupe, May 30th 2018
Previous work @Météo-France
Regional Climate Change
Modelling Approach

Dynamical downscaling

ALADIN-Climate
- Limited domain: Lesser Antilles
- Horizontal resolution: 10 km
- Driving GCM: ARPEGE 50 km
- Only one member
- RCP4.5/8.5 2071-2100

3rd CI RCW
Le Gosier, Guadeloupe, May 30th 2018
Regional Climate Change
Projections of temperature over the Lesser Antilles

Stronger warming on land than sea (1.6/3.0°C – 1.2/2.3°C) and during the wet season

Night temperatures rise more

Max warming in Dominica, min in Marie-Galante. Relief effect?

Homogeneous warming at sea

Change in seasonal mean temperature (°C) in 2071-2100 relative to 1971-2000

3rd CI RCW
Le Gosier, Guadeloupe, May 30th 2018
Regional Climate Change
Projections of rainfall over the Lesser Antilles

Change in seasonal mean rainfall (%) in 2071-2100 relative to 1971-2000

General drying at sea (-15%), max in MJJ

Drying on land in FMA (-10%)

Max drying in Dominica, wetter e.g. in Martinique & St-Lucia.

=> Strong local response
Extreme precipitation
Statistical downscaling over Guadeloupe

Cantet et al. 2014 Tellus

22 stations & 16 model points (long series daily obs. needed)

Change in extreme rainfall indices (%) for regional/global climate models:
- cdd: consecutive dry days
- cwd: consecutive wet days
- sdii: simple daily intensity
- cumul: total wet day precip.

Rain gauge data to correct model outputs @closest grid point (q-q plot)

Clear increase in extreme rainfall: longer dry periods (+2d), larger annual precip (+170mm), + very heavy precip days (+3/yr), stronger 1d max precip (+20mm). Consistent with IPCC-AR5

No trends in low-resolution model (Puerto Rico)
The C3AF Project
C3AF Project
Revisiting climate projections

Change in the modelling approach @Météo-France

Cantet: Dynamical downscaling

ALADIN-Climate
- Limited domain: Lesser Antilles
- Horizontal resolution: 10 km
- Only one member
- RCP4.5/8.5 2071-2100

C3AF: global model, stretched grid

Resolution locale (en kms)

ARPEGE-Climate
- Centered on Atlantic basin 20°N - 50°W
- Horizontal resolution: 10-15 km+
- Ensemble simulations (5 members)
- RCP8.5, 2020-2080
- IPCC Physics (CNRM-CM5)

3rd CI RCW
Le Gosier, Guadeloupe, May 30th 2018
C3AF Project
Projections of tropical cyclone activity (Antilles)

example of cat-4 hurricane simulated by ARPEGE

Wind-pressure relationships (Antilles)

Chauvin et al. in prep.
C3AF Project
Projections of tropical cyclone activity (North Atlantic)

Distribution max wind

![Graph showing cyclone seasonality]

- Reduced hurricane season (2-3 weeks)

Change in cyclone track density

- Displacement of cyclonic hazard towards the north (extra-tropics) and east ("cape-verde" cyclones) in relation with the projected expansion of the tropics.

=> Reduction for the Caribbean? Use caution.
Consistent with Diro et al. 2014.

Chauvin et al. in prep.

- Reductions: cat-1
 + Increases: cat-4/5

Nb TC days /20 yrs (200 km radius)

3rd CI RCW

Le Gosier, Guadeloupe, May 30th 2018
C3AF Project
Multi-scale sea state modelling

Example of Matthew (2016)

Belmadani et al. in prep.

3rd CI RCW
Le Gosier, Guadeloupe, May 30th 2018
C3AF Project
High-resolution wave model for the Lesser Antilles

French Antilles: 200 m resolution
Other islands: 500 m resolution

St-Martin, St-Barthélémy (Anguilla)
Martinique
Guadeloupe

3rd CI RCW
Le Gosier, Guadeloupe, May 30th 2018
C3AF Project
Modelling changes in cyclonic wave climate

Modelling strategy
3 scenarios x 5 members x 30 yrs = 450
MFWAM05: 450 hurricane seasons
MFWAM01: 450 hurricane seasons
WW3: 450 peaks hurricane season

C3AF configuration: example of tropical storm in the Lesser Antilles and wave response

Belmadani et al. in prep.

3rd CI RCW
Le Gosier, Guadeloupe, May 30th 2018
C3AF Project
Projections of cyclonic wave climate (North Atlantic)

MFWAM 2051-2080 vs. 1984-2013

Change in JASO wave heights (m)

- 5-10%

Change in JASO wave height variability (m)

+ 10-15%

Change in JASO wave period variability (s)

+10%

Tropical N.Atl. (cyclonic season): reduced wave heights by ~10 cm on average yet increased variability in wave heights/periods: + hurricane swells?
Overall consistent with previous studies

Belmadani et al. in prep.

3rd CI RCW
Le Gosier, Guadeloupe, May 30th 2018
Reduced wave heights by up to 10 cm on average
More frequent waves 3 m+ at hurricane season peak
Less frequent waves 3 m+ at end of hurricane season
Work in progress & WW3 simulations now being analyzed.
C3AF Project
Impact studies: storm surge, coastal erosion, hydrology, risks

Organigramme C3AF

Gouvernance opérationnelle
UA/MF/BRGM/GRED

Comité de pilotage
Coordinateur (N. Zahibo, D. Bernard)
Coordination technique : L. Prévost
Responsable des Work Packages
(P. Palany, N. Zahibo, Y. Legendre, F. Leone)

Assistance au pilotage et à la gouvernance

WP1 Climat

WP2 Submersion
WP3 Trait de côte

WP4 Changement géologique et hydrogéologique

WP5
Synthèse et vulgarisation : géo-indicateurs du CC et des risques, Communication et valorisation des résultats
Information et sensibilisation sur les enjeux scientifiques, techniques et socio-économiques posés par le CC
valorisation des résultats d’expertise construite autour de jeux d’indicateurs spatialisés (géo-indicateurs)
Mini-atlas du changement climatique et des risques associés

Collaborateur directs

3rd CI RCW
Le Gosier, Guadeloupe, May 30th 2018
Observations: regional warming trend (0.2-0.3°C/decade). No significant trends in rainfall (yet?).

Projections of regional climate: general agreement in year-round warming and wet-season drying trends over the Caribbean (stronger trades). High resolution (e.g. 10-15 km) is essential to represent local effects at the island scale, especially for the Lesser Antilles.

Projections of local climate: dry-season drying on land in the Lesser Antilles, unlike the ocean. Large inter-island variability, possible role of topography. More frequent extreme precipitation events. Being revisited with new modelling approach (ARPEGE-Climate), C3AF project.

Conclusion
Projections of cyclonic activity: increased frequency of extreme Atlantic hurricanes but shortening of the hurricane season and displacement of the hazard towards the extra-tropics and Cape-Verde => possible reduction in hurricane hazard over the Caribbean? A cautionary note.

Projections of sea states (2051-2080): during the hurricane season, wave heights are reduced by up to 10 cm on average off Antilles Atlantic coasts but increased frequency of high surf events for the Lesser Antilles => possible increase in cyclonic swell and sea? Work in progress and high-resolution coastal projections for the Lesser Antilles now being analyzed.

Future research: projections will need to be confirmed by using other GCMs to drive ARPEGE to increase confidence and better assess uncertainties. Opportunities of collaboration for high-resolution impact studies (atmosphere, waves) over other islands.
Thanks for your attention!

ali.belmadani@meteo.fr
Sea level ~2-5 mm/year

Sea level rise from satellite altimetry (1993-2009)

Willis et al. 2010

3rd CI RCW
Le Gosier, Guadeloupe, May 30th 2018
• **RCP 8.5**: in 2100, an 8.5 W/m² radiative forcing is reached, corresponding to CO₂ concentration ~1370 ppm. Radiative forcing is still increasing in 2100.